Rhodium-Catalyzed Formylation of Organomercurials: Application to Efficient Polyol Synthesis

Stella T. Sarraf and James L. Leighton*

Department of Chemistry, Columbia University, New York, New York, 10027

Supporting Information

General Information. All reactions were conducted under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring unless otherwise indicated. $Rh(acac)(CO)_2$ was purchased from Strem and was used as received. $P(O-o-t-BuPh)_3$ was prepared by the method of Van Leeuwen.¹ 1,4-diazabicyclo[2.2.2]octane (DABCO) was purchased from Aldrich and used as received. EtOAc was distilled from CaH₂ immediately prior to use. Infrared spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR spectrometer. ¹H NMR spectra were recorded on a Varian VXR-200 (200 MHz) spectrometer, a Bruker DRX-300WB (300 MHz) spectrometer and a Bruker DMX-500 (500 MHz) spectrometer and are reported in ppm from internal tetramethylsilane. Data are reported as follows: (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constant(s) in Hz; integration; assignment). Proton decoupled ¹³C NMR spectra were recorded on a Varian VXR-300 (75 MHz) spectrometer using CDCl₃ (77.0 ppm) or C₆D₆ (128.0 ppm) as internal standard. ¹⁹⁹Hg spectra were recorded on a a Bruker DRX-300WB (300 MHz) spectrometer, frequency for ¹⁹⁹Hg, 53.7 MHz: pulse, 4.25 µsec; acquisition time, 0.5 sec; delay µsec; 5000- 20,000 scans. Calibration was made with Hg(OAc)₂ in 1M HOAc (0.5M) at -2389 ppm.² High resolution mass spectra were obtained on a JEOL HX110 mass spectrometer in the Columbia University Mass Spectrometry Laboratory.

General procedure for the rhodium-catalyzed formylation of organomercury chlorides. An oven-dried stainless steel pressure vessel equipped with a glass liner and magnetic stirring bar is charged with the organomercury chloride³ and EtOAc to a concentration of 0.50 M. DABCO (0.50 equiv) is then added followed by $P(O-o-t-BuPh)_3$ (4 mol%) and $Rh(acac)(CO)_2$ (4 mol%). The bomb/pressure guage is assembled and the apparatus is pressurized to 500 psi with 1/1 H₂/CO and then vented. This procedure is repeated twice and the apparatus is then pressurized to 800 psi. The apparatus is heated by immersion in an oil bath set at 50 °C with magnetic stirring. After 6-18 h,⁴ the apparatus is cooled in an ice bath and then vented. The reaction mixture is filtered through a pad of celite using generous amounts of CH_2Cl_2 for elution. The filtrate is

concentrated and treated with pentane, and the mixture is cooled to 0 °C and filtered through a pad of celite using cold pentane for elution. The filtrate is concentrated and the residue is purified by chromatography on silica gel.

CAUTION! The reaction produces Hg and possibly Hg(II) salts as byproducts. These are removed in the filtrations and proper precautions should be taken during the workup to avoid exposure to these toxic substances.

Characterization data for aldehyde 2 (Table 1) and the aldehyde products in Table 2.

cis-cis-2-ethyl-6-octyl-4-(2-oxoethyl)-1,3-dioxane (2). ¹H NMR (300 MHz, CDCl₃) δ 9.81 (t, J = 2.0 Hz, 1H, CHO), 4.48 (t, J = 5.3 Hz, 1H, C(2)H), 4.16 (m, 1H, C(4)H), 3.58 (m, 1H, C(6)H), 2.68 (ddd, J = 2.2, 7.5, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 2.54 (ddd, J = 1.7, 5.0, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 1.3-1.4 (m, 4H, C(2)-CH₂CH₃, C(5)H₂), 0.86-0.94 (m, 14H, C(6)-(CH₂)₇), 0.89 (m, 6H, C(2)-CH₂CH₃, C(6)-(CH₂)₇CH₃); ¹³C NMR (300 MHz, CDCl₃) δ 200.8, 102.8, 76.2, 71.4, 49.5, 36.8, 35.8, 31.9, 29.5, 29.3, 28.0, 25.0, 22.7, 14.1, 8.5; IR (thin film) 2919, 2859, 2719, 1727, 1462, 1378, 1343, 1343, 1148, 1123, 1029, 974, 869, 719 cm⁻¹; HRMS (FAB+) calc'd for C₁₆H₃₁O₃: 271.2273, found 271.2284.

cis-cis-2-ethyl-4-(2-oxoethyl)-6-pentyl-1,3-dioxane (Table 2, entry 1). ¹H NMR (300 MHz, CDCl₃) δ 9.81 (t, J = 2.0 Hz, 1H, CHO), 4.48 (t, J = 5.3 Hz, 1H, C(2)H), 4.15 (m, 1H, C(4)H), 3.59 (m, 1H, C(6)H), 2.69 (ddd, J = 2.2, 7.5, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 2.55 (ddd, J = 1.7, 5.1, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 1.54-1.67 (m, 4H, C(2)-CH₂CH₃, C(5)H₂), 1.24-1.44 (m, 8H, C(6)-(CH₂)₄), 0.86-0.94 (m, 6H, C(2)-CH₂CH₃, C(6)-(CH₂)₄CH₃); ¹³C NMR (300 MHz, CDCl₃) δ 200.8, 102.8, 76.2, 71.3, 49.5, 36.8, 35.8, 31.7, 28.0, 24.7, 22.6, 14.0, 8.5; IR (thin film) 2936, 2856, 2732, 1728, 1466, 1377, 1346, 1306, 1142, 1116, 1031, 983, 872 cm⁻¹; HRMS (EI) [M-H]⁺ calc'd for C₁₃H₂₃O₃: 277.1647, found 227.1653.

cis-cis-6-Benzyloxymethyl-2-ethyl-4-(2-oxoethyl)-1,3-dioxane (Table 2, entry 2). ¹H NMR (300 MHz, CDCl₃) δ 9.8 (t, J = 1.7 Hz, 1H, CHO), 7.33 (m, 5H, C₆H₅), 4.58 (d, J = 4.0 Hz, 2H, CH₂Ph), 4.54 (t, J = 5.3 Hz, 1H, C(2)H), 4.19 (m, 1H, C(4)H), 3.91 (m, 1H, C(6)H), 3.55 (dd, J = 6 and 10 Hz, 1H, one of CH₂OBn), 3.48 (dd, J = 4.6 and 10 Hz, 1H, one of CH₂OBn), 2.7 (ddd, J = 2.2, 7.5, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 2.56 (ddd, J = 1.5, 5.0, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 1.58-1.7 (m, 3H, one of C(2)-CH₂CH₃, C(5)-H₂), 1.43 (m, 1H, one of C(2)-CH₂CH₃), 0.93 (t, J = 7.5 Hz, 3H, C(2)-CH₂CH₃); ¹³C NMR (300 MHz, CDCl₃) δ 200.5, 138, 128.4, 127.7, 102.7, 75.3, 73.5, 72.6, 71.1, 49.4, 33.3, 27.9, 8.4; IR (thin film)

3029, 2960, 2862, 2813, 2724, 1725, 1494, 1450, 1376, 1342, 1111, 974, 743, 699 cm⁻¹; HRMS (FAB+) calc'd for C₁₆H₂₂O₄K: 317.1155, found 317.1165.

cis-cis-6-(2-*tert*-Butyldimethylsilyloxy)ethyl-2-ethyl-4-(2-oxoethyl)-1,3-dioxane (Table 2, entry 3). ¹H NMR (300 MHz, CDCl₃) δ 9.81(t, J = 2.0 Hz, 1H, CHO), 4.49 (t, J = 5.3 Hz, 1H, C(2)H), 4.19 (m, 1H, C(4)H), 3.65- 3.82 (m, 3H, C(6)-CH₂OTBS, C(6)H), 2.71 (ddd, J = 2.3, 7.6, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 2.55 (ddd, J = 1.7, 4.9, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 1.57-1.78 (m, 4H, C(6)-CH₂CH₂OTBS, C(5)H₂), 1.25 (m, 2H, C(2)-CH₂CH₃), 0.89- 0.94 (m, 12 H, C(2)-CH₂CH₃, OSiC(CH₃)₃(CH₃)₂), 0.05 (s, 6H, SiC(CH₃)₃(CH₃)₂); ¹³C NMR (300 MHz, CDCl₃) δ 200.7, 102.8, 72.6, 71.4, 58.7, 49.4, 38.8, 36.9, 28.7, 28.0. 25.9, 8.6, -5.4; IR (thin film) 2919, 2859, 1727, 1462, 1383, 1348, 1253, 1138, 1098, 979, 839, 774 cm⁻¹; HRMS (FAB+) calc'd for C₁₆H₃₃O₄Si: 317.2148, found 317.2161.

cis-cis-2-ethyl-6-((*E*)-3-methyl-1-butenyl)-4-(2-oxoethyl)-1,3-dioxane (Table 2, entry 4). ¹H NMR (300 MHz, CDCl₃) δ 9.82 (t, *J* = 1.9 Hz, 1H, CHO), 5.66 (dd, *J* = 5.8 and 15.6 Hz, 1H, C(6)-CH=CH), 5.45 (ddd, *J* = 1.1, 6.2, 15.6 Hz,1H, C(6)-CH=CHCH(CH₃)₂), 4.55 (t, *J* = 5.2 Hz, 1H, C(2)H), 4.14 (m, 2H, C(4)H, C(6)H), 2.7 (ddd, *J* = 2.1, 7.4, 16.8 Hz, 1H, one of C(4)-CH₂-CHO), 2.57 (ddd, *J* = 1.6, 5.1, 16.7 Hz, 1H, one of C(4)-CH₂-CHO), 2.28 (m, 1 H, C(6)-CH=CHCH(CH₃)₂), 1.4-1.7 (m, 4H, C(2)-CH₂CH₃, C(5)H₂), 1.0 (d, *J* = 6.2 Hz, 6H, C(6)-CH=CHCH(CH₃)₂), 0.93 (t, *J* = 7.5 Hz, 3H, C(2)-CH₂CH₃); ¹³C NMR (300 MHz, CDCl₃) δ 200.6, 139.8, 126.4, 102.6, 76.7, 71.1, 49.3, 36.9, 30.6, 28.0, 22.0, 8.4; IR (thin film) 2954, 2856, 2723, 1728, 1462, 1373, 1337, 1306, 1258, 1240, 1133, 1027, 974, 916, 867, 734 cm⁻¹; HRMS (EI) [M-H]⁺ calc'd for C₁₃H₂₁O₃: 225.1491, found 225.1491.

cis-cis-5,5-dimethyl-2-ethyl-4-(2-oxoethyl)-6-pentyl-1,3-dioxane (Table 2, entry 5). ¹H NMR (300 MHz, CDCl₃) δ 9.80 (t, *J* = 2.1 Hz, 1H, CHO), 4.45 (t, *J* = 5.2 Hz, 1H, C(2)H), 3.84 (dd, *J* = 2.6 and 10 Hz, 1H, C(4)H), 3.21 (dd, *J* = 2.6 and 9.1 Hz, 1H, C(6)H), 2.56 (ddd, *J* = 2.5, 10, 16.2 Hz, 1H, one of C(4)-CH₂-CHO), 2.45 (dt, *J* = 2.2 and 16.2 Hz, 1H, one of C(4)-CH₂-CHO), 1.3-1.6 (m, 10H, C(2)-CH₂CH₃, C(6)-(CH₂)₄, 0.89 (m, 9H, C(2)-CH₂CH₃, C(6)-(CH₂)₄CH₃, C(5)-CH₃), 0.73 (s, 3H, C(5)-CH₃); ¹³C NMR (300 MHz, CDCl₃) 201.9, 103.3, 85.5, 80.3, 43.3, 35.2, 31.8, 28.8, 27.8, 26.3, 22.6, 20.6, 14.1, 13.9, 8.4; IR (thin film) 2918, 2865, 2714, 1728, 1466, 1408, 1391, 1368, 1346, 1311, 1173, 1133, 1102, 1036, 983 cm⁻¹; HRMS (EI) [M-H]⁺ calc'd for C₁₅H₂₇O₃: 255.1960, found 255.1954.

Characterization data for 9, 10, 11, 12, 13 and 14 (Scheme 5).

(4R,6R)-4-chloromercurymethyl-2,2-dimethyl-6-pentyl-1,3-dioxane (9). $[\alpha]_D^{22} = -24.6$ (*c* 0.976, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 4.25 (m, 1H, C(4)H), 3.81 (m, 1H, C(6)H), 2.28 (dd, J = 5.0, 11.9 Hz, 1H, one of C(4)-CH₂), 2.08 (dd, J = 5.9, 11.9 Hz, 1H, one of C(4)-CH₂), 1.0-1.7 (m, 16H, C(2)-(CH₃)₂, C(5)H₂, C(6)-(CH₂)₄), 0.89 (t, J = 6.3, 3H, C(6)-(CH₂)₄CH₃); ¹³C NMR (300 MHz, CDCl₃) δ 98.8, 68.7, 67.9, 41.1, 39.6, 36.2, 31.7, 30.4, 24.6, 22.6, 20.1, 14.0; IR (CDCl₃) 2991, 2932, 2861, 1462, 1377, 1261, 1200, 1176, 1119, 1017, 926, 871, 733 cm⁻¹; HRMS (FAB+) [M+H]⁺ calc'd for C₁₂H₂₄O₂Hg²⁰²Cl³⁵: 437.1163, found 437.1155.

(4*S*,6*R*)-2,2-dimethyl-4-(2-oxoethyl)-6-pentyl-1,3-dioxane (10). $[α]_D^{22} = -154$ (*c* 0.847, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 9.79 (t, *J* = 1.8 Hz, 1H, CHO), 4.90 (m, 1H, C(4)H), 3.85 (m, 1H, C(6)H), 2.58 (ddd, *J* = 2.2, 7.2, 16.6 Hz, 1H, one of C(4)-CH₂), 2.50 (ddd, *J* = 1.6, 5.1, 16.6 Hz, 1H, one of C(4)-CH₂), 1.1-1.7 (m, 16H, C(2)-(CH₃)₂, C(5)H₂, C(6)-(CH₂)₄), 0.89 (t, *J* = 6.3, 3H, C(6)-(CH₂)₄CH₃); ¹³C NMR (300 MHz, CDCl₃) δ 201, 98.7, 68.8, 64.7, 49.9, 36.7, 36.3, 31.7, 30.0, 24.5, 22.6, 19.7, 14.0; IR (thin film) 2989, 2927, 2862, 2728, 1731, 1466, 1435, 1381, 1352, 1264, 1201, 1169, 1150, 1111, 1018, 998, 948, 874, 829, 727 cm⁻¹; HRMS (FAB+) [M+H]⁺ calc'd for C₁₃H₂₅O₃: 229.1804, found 229.1814.

(4*S*,6*S*,8*R*)-6,8-bis-*O*-(1-methylethylidene)-1-tridecene-4,6,8-triol (11). $[α]_D^{22} = -7.67$ (*c* 1.373, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 5.8 (m, 1H, C(2)H), 5.1 (m, 2 H, C(1)H₂), 4.1 (m, 1H, C(4)H), 3.9 (m, 2H, C(6)H, C(8)H), 3.5 (s, 1H, C(4)-OH), 2.2 (m, 2H, C(3)H₂), 1.1-1.6 (m, 18H, C(7)H₂, C(8)-(CH₂)₄, C(CH₃)₂, C(5)H₂), 0.88 (t, *J* = 6.6 Hz, 3H, C(13)H₃); ¹³C NMR (300 MHz, CDCl₃) δ 134.9, 117.3, 98.6, 71.0, 70.3, 68.9, 42.3, 42.0, 37.1, 36.3, 31.7, 30.2, 24.6, 22.6, 19.9, 14.0; IR (thin film) 3466, 3077, 2993, 2937, 28, 1642, 1466, 1434, 1381, 1352, 1316, 1264, 1201, 1112, 996, 941, 915, 875, 823, 782 cm⁻¹; HRMS (FAB+) [M+H]⁺ calc'd for C₁₆H₃₁O₃: 271.2273, found 271.2279.

(2R,4R,6R,8R)-1-chloromercury-2,4:6,8-bis-*O*-(1-methylethylidene)-tridecane-2,4,6,8-tetrol (12). $[\alpha]_D^{22}$ = -16.0 (*c* 0.433, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 4.27 (m, 1H, C(2)H), 4.01 (m, 2H, C(4)H, C(6)H), 3.8 (m, 1H, C(8)H), 2.29 (dd, *J* = 4.9, 11.9 Hz, 1H, one of C(1)H₂), 2.06 (m, 1H, one of C(1)H₂), 1.0-1.8 (m, 26H, C(3)H₂, C(5)H₂, C(7)H₂, C(8)-(CH₂)₄, (C(CH₃)₂)₂), 0.89 (m, 3H, C(13)H₃); ¹³C NMR (300 MHz, CDCl₃) δ 98.9, 98.3, 69.0, 67.9, 65.2, 65.0, 42.4, 40.8, 39.6, 36.7, 36.4, 31.8, 30.3, 29.9, 24.6, 22.6, 20.2, 19.8, 14.0; IR (CDCl₃) 2992, 2936, 2864, 2241, 1724, 1463, 1437, 1380, 1262, 1199, 1172, 1112, 1019, 970, 872, 735 cm⁻¹; HRMS (FAB+) [M-Cl]⁺ calc'd for C₁₉H₂₅O₄Hg²⁰²: 529.2245, found 529.2233.

(3S,5S,7R,9R)-3,5:7,9-bis-*O*-(1-methylethylidene)-1-tetradecanal-3,5,7,9-tetrol (13). $[\alpha]_D^{2^3} = -0.44 (c 0.503, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 9.79 (s, 1H, CHO), 4.40 (m, 1H, C(3)H), 4.06 (m, 2H, C(5)H, C(7)H), 3.80 (m, 1H, C(9)H), 2.59 (ddd, J = Hz, 1H, one of C(2)H₂), 2.50 (dd, J = Hz, 1H, one of C(2)H₂), 1.1-1.9 (m, 26H, C(4)H₂, C(6)H₂, C(8)H₂, (C(CH₃)₂)₂, C(9)-(CH₂)₄), 0.89 (t, J = 6.1 Hz, 3H, C(14)H₃); ¹³C NMR (300 MHz, CDCl₃) δ 201, 98.7, 98.3, 68.9, 65.1, 65.0, 64.6, 49.8, 42.5, 36.7, 36.4, 36.3, 31.8, 30.2, 24.6, 22.6, 19.8, 19.7, 14.0; IR (thin film) 2993, 2940, 2728, 1732, 1465, 1436, 1380, 1263, 1200, 1017, 943, 874, 835, 734, 647, 523 cm⁻¹; HRMS (FAB+) [M-H]⁺ calc'd for C₂₀H₃₅O₅: 355.2484, found 355.2482.

(4*S*,6*S*,8*S*,10*R*,12*R*)-6,8:10,12-bis-*O*-(1-methylethylidene)-1-heptadecene-4,6,8,10,12-pentaol (14). $[\alpha]_{D}^{21} = -6.83$ (*c* 0.473, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 5.83 (m, 1H, C(2)H), 5.07 (m, 2 H, C(1)H₂), 3.78- 4.25 (m, 5H, C(4)H, C(6)H, C(8)H, C(10)H, C(12)H), 3.50 (s, 1H, C(4)-OH), 2.16- 2.29 (m, 2H, C(3)H₂), 1.78 (ddd, *J* = 7.09 and 13.9 Hz, 1H, one of C(9)H₂), 1.00-1.64 (m, 27H, C(5)H₂, C(7)H₂, C(11)H₂, one of C(9)H₂, (C(CH₃)₂)₂, C(12)-(CH₂)₄), 0.89 (t, *J* = 6.6 Hz, 3H, C(17)H₃); ¹³C NMR (300 MHz, CDCl₃) δ 134.8, 117.4, 98.6, 98.3, 71.0, 70.3, 68.9, 65.2, 42.5, 42.2, 41.96, 36.8, 36.7, 36.4, 31.8, 30.3, 30.2, 24.6, 22.6, 19.9, 19.8, 14.0; IR (CDCl₃) 3502, 2991, 2937, 2861, 1463, 1430, 1381, 1261, 1202, 1169, 1109, 935, 919, 870, 810 cm⁻¹; HRMS (FAB+) [M-H]⁺ calc'd for C₂₃H₄₁O₅: 397.2954, found 397.2938.

Tolypothrix pentaether (7). The conversion of compound 14 to the natural product 7 was carried out according to the method of Brückner.⁵ Complete experimental and spectral details are provided in that work. Our synthetic material was identical in every respect.

(1) Jongsma, T.; Challa, G.; Van Leeuwen, P. W. N. M. J. Organomet. Chem. 1991, 421, 121-128.

(2) Harris, R.K.; Mann, B.E. In NMR and The Periodic Table; Academic Press: New York, 1978; p 268.

(3) Sarraf, S. T.; Leighton, J. L. Org. Lett. 2000, 2, 403-405.

(4) The usual reaction time is 6 h. However, for more hindered substrates (*e.g.* entry 5, Table 2, and acetonides 7 and 10) longer reaction times are necessary.

(5) Allerheiligen, S.; Brückner, R. Liebigs Ann. 1997, 1667-1676.